Search for New Physics in ultra-peripheral heavy-ion collisions in the ATLAS experiment at the LHC

Project duration: 1.11.2020–30.04.2023 Project manager: Prof. Dr hab. Iwona Grabowska-Bołd Faculty of Physics and Applied Computer Science

EXCELLENCE INITIATIVE

INTRODUCTION:

The Dirac equation predicts the magnetic moment of charged leptons with the gyromagnetic factor g_i=2. However, quantum loop effects lead to small calculable deviation parametrized by the anomalous magnetic moment $a_i = (g_i - 2)/2$. The anomalous magnetic moments of electron and muon are measured with extraordinary experimental precision providing the opportunity to test the Standard Model (SM) predictions. The τ -lepton anomalous magnetic moment, a_{τ} , is well predicted theoretically but so far strikingly evades precision measurements. Its value is sensitive to many Beyond Standard Model (BSM) effects (lepton compositeness, supersymmetry, TeV-scale leptoquarks, ...).

ATLAS provides the first measurement of the τ-lepton properties in ultra-peripheral collisions (UPC) of heavy-ions. A UPC occurs when the distance separating the interacting nuclei exceeds the sum of their radii. The large electromagnetic fields generated by relativistic ions give rise to photon-induced processes. The exceptional characteristics of a UPC: huge cross-section enhancement and suppression of hadronic interactions, make it an excellent tool for studying rare processes and searching for BSM phenomena.

two lead ions.

ton pair production in ultraperipheral lead-lead interactions, Pb+Pb \rightarrow Pb($\gamma\gamma\rightarrow\tau\tau$)Pb, with the τ -leptons decaying into one muon and one charged pion.

METHODOLOGY:

Our measurement uses ultra-peripheral collisions of lead-lead beams at centre-of-mass energy of $\sqrt{s_{NN}}$ = 5.02 TeV recorded by the ATLAS experiment at the Large Hadron Collider at CERN. The data sample corresponds to an integrated luminosity of 1.44 nb⁻¹. **Exclusive ditau production**, $\gamma\gamma \rightarrow \tau\tau$, is studied. Candidate events contain one muon from the τ -lepton decay and an electron or charged-particle track(s) from the other τ -lepton decay. Three signal regions (SR) are defined:

- µe-SR → muon + electron
- μ1T-SR → muon + 1 track
- μ 3T-SR \rightarrow muon + 3 tracks

Signal events are selected with a single muon trigger requiring muon transverse momentum, p_{τ} , above 4 GeV. To ensure the exclusivity of the selected events, vetoes on forward neutron activity and on additional low- p_{τ} tracks are imposed. The main sources of background contributions arise from the exclusive dimuon production, $\gamma\gamma \rightarrow \mu\mu$, with the final-state radiation and diffractive photonuclear interactions. The $\gamma\gamma \rightarrow \mu\mu$ background is constrained with a dimuon control region, 2μ-CR.

The analysis strategy is to exploit the $\gamma\gamma \rightarrow \mu\mu$ cross-section dependence and muon p_{τ} shape dependence on a_{τ} . A fit to the muon p_{τ} distribution in the SRs and CR is performed to extract the value of a_{τ} .

Figure 3. Overall view of the LHC, including 4 LHC detectors: ALICE, ATLAS, CMS and LHCb.

Figure 4. Event display for an exclusive $\gamma\gamma \rightarrow \tau\tau$ candidate from μ 1T-SR in lead-lead collision data.

Figure 5. Event display for an exclusive $\gamma\gamma \rightarrow \tau\tau$ candidate from μ 3T-SR in lead-lead collision data.

Figure 6. Event display for an exclusive $\gamma\gamma \rightarrow \tau\tau$ candidate from μ e-SR in lead-lead collision data.

RESULTS:

After applying the event selection, a total of **656 data events are observed** in three signal regions in which the analysis is performed.

The observation of $\gamma\gamma \rightarrow \tau\tau$ in UPC Pb+Pb collisions is established with a significance exceeding 5 standard deviations. The significance is the highest in the $\mu 1T$ -SR, while the largest signal-background ratio is observed in the μe -SR. The signal strength, μ_{π} , defined as the ratio of the observed signal yield to the SM expectation is measured using a profile-likelihood fit to be μ_{π} =1.03_{-0.05}+0.06, assuming the SM value of a_{\tau} (a_{\tau} = 0.00117721(5)). To measure a_{\tau}, a template fit to the muon p_{τ} distribution is performed in the three SRs with a_{τ} being the only free parameter. The distribution of p_{τ} is chosen because of its high sensitivity to a. Templates with 14 different a. values are employed. In the nominal signal sample a_{τ} is set to the SM value. A control region with events from the $\gamma\gamma \rightarrow \mu\mu$ process is used in the fit to constrain systematic uncertainties from initial-photon fluxes.

The best-fit a_{\downarrow} value is measured to be a_{\downarrow} = -0.041 with the corresponding observed 95% confidence-level interval being -0.057 < a_ < 0.024. Its precision **is competitive** with **the world-best limit** from the DELPHI experiment [2].

Figure 7. Muon transverse momentum distributions in the µ1T-SR category.

Figure 8. Muon transverse momentum distributions in the 2μ-CR category.

Figure 9. Measurements of a from fits to individual signal regions (including the dimuon control region) and from the combined fit, including a comparison with existing measurements from the OPAL, L3 and DELPHI experiments at LEP.

SUMMARY:

Our project provides a pioneering measurement of tau leptons in heavy-ion collisions using exclusive ditau production in Pb+Pb **UPC** at the LHC. The $\gamma\gamma \rightarrow \tau\tau$ process is observed with above 5 σ significance. The **signal strength** is **consistent** with the SM expectation. The new constraints on the τ -lepton anomalous magnetic moment are set and are competitive with the previous best limit from the LEP era [2]. Further improvements in precision are expected with new Pb+Pb data to be collected in 2023 as part of the **Run-3** campaign at CERN.

REFERENCES:

- ATLAS Collaboration, arXiv:2204.13478 [hep-ex], accepted by PRL
- DELPHI Collaboration, J. Abdallah et al., Eur. Phys. J. C 35 (2004) 159–170, arXiv:hep-ex/0406010